Institution	
OSU Optometry	Efficacy of Light Therapy for Traumatic Brain Injury-Associated
PI: Andrew Hartwick	Photophobia
PI: Andrew Hartwick	Photophobia Many people develop intolerance to light after a head injury. With this condition, ambient light levels can cause discomfort, resulting in these individuals often having to wear dark sunglasses even while indoors. We do not fully understand why this occurs and how it should be treated. A growing number of clinicians have reported success in treating this condition through daily exposure of these individuals' eyes to blue light emitted from a light box. However, the effectiveness of this treatment has yet to be assessed in a well-controlled clinical study. In this work, we will recruit individuals who had a recent brain injury and developed light intolerance. Participants will be divided into two groups: one that is instructed to undergo at-home daily 20 minute treatments with blue light for 12 weeks; and another that will undergo a similar treatment routine with red light. Every 3 weeks, masked examiners will record pupil responses to light and collect information about participant symptoms. In a cross-over study design, the participants will then switch to the other treatment regime for another 12 weeks, with data being again collected every 3 weeks. Potential differences in pupil responses to light between the treatment groups will be assessed as an objective outcome measure and compared to subjective symptom survey information. Relevance : This work will test the hypothesis that daily blue light treatments can alleviate light intolerance in participants after head injury, and this improvement is associated with altered pupil responses to light. As a significant minority of eye care clinicians currently provides this treatment, this study has the potential to influence clinical practice
	patterns whether the light therapy is shown to be effective or not.
OSU Ophthalmology	Genetic, neurodegenerative, and proliferative mechanisms in retinal damage
PI: Colleen Cebulla &	and ocular tumors, and potential for therapy
Shigeo Tamiya	We have identified important inflammatory proteins that contribute to damage that occurs in retinal detachment (RD), a prevalent condition that frequently results in loss of reading vision. Visual loss results from photoreceptor degeneration as well as scarring, which alters retinal structure and function. In addition, patients may develop a form of scarring called epiretinal membrane. There are currently no effective pharmacologic treatments for these diseases. Our long-term goal is to develop neuroprotective and anti-fibrotic therapies to prevent visual loss from RD and other damaging retinal conditions, such as age-related macular degeneration. This proposal will evaluate underlying cellular, genetic, and protein changes providing the basis for neurodegeneration and retinal scarring, with a future goal to identify proteins that can be effectively targeted by therapy. This project may also lead to discoveries which benefit other retinal disorders, including diabetic retinopathy. Our work on ocular tumors like ocular melanoma is critical to identify at-risk individuals and families for cancer and hopefully allow earlier intervention and fewer cancer deaths. It will hopefully uncover mechanisms of disease that can lead to new therapeutic options. Because eye cancer is rare, drug companies typically do not support this research; groups like OLERF are critical to help advance improvements in eye cancer and other eye diseases. This work may allow detection of disease at an earlier stage and improve outcomes for patients. The results may

[improve detection and early treatment of ocular and other cancers as well as find
	novel mechanisms to develop new cancer treatments.
U of Cincinnati	Gene and Cell Therapy of Ocular Surface Disease
PI: Winston Kao	Lysosomal storage diseases (LSDs), a family of inherited diseases caused by a
	mutation in genes of lysosomal enzymes/proteins, resulting in accumulation of
	metabolites in situ and lack of nutrients to cells. Both of which lead to cells and
	tissues dysfunctions. Lysosomal enzyme/proteins are secreted almost by all cell
	types, i.e., epithelial, endothelial and mesenchymal cells, via EV (extracellular
	vesicles) into interstitial tissues, e.g., connective tissues, and interstitial fluids, e.g.,
	blood and lymph fluid. Thus, correction of a fraction of somatic and somatic stem
	cells, e.g., liver cells that secret functional enzyme via EV, can ameliorate systemic
	symptoms. In the past few years, we have dedicated in developing novel regimens
	of umbilical mesenchymal stem/stromal cells (UNISUS)1-5 and gene therapy via
	transgenesis and UKISPK gene editing techniques to treat congenitat and acquired
	will perform a series of studies in four Aims Aim 1 Using transgenesis with
	self-complementary scA AVBGlu viral vector and CRISPR HMEL (homology
	mediated end joining) to treat Gusb/MPS VII mice Aim 2. Use of
	self-complementary scAVCtns viral vectors for cystinosis. Aim 3, To determine
	the optimal culture conditions and identify biomarkers for UMSCs that have best
	therapeutic capacity of regenerating transparent corneas following alkali burn. Aim
	4, To develop novel gene therapy strategy for glaucoma.
	Relevance
	The proposed studies will validate efficacy of gene therapy strategies by
	conventional transgenesis and novel CRISPR gene editing techniques for curing
	inherited LSDs, and to define the best culture conditions for preparing MSCs
	having the highest therapeutic capacity for regenerating transparency of
Abron Children's	
Akton Children 5	
CWRU	"Generating a rhodopsin-YFP fusion knockin mouse by CRISPR/Cas9"
PI: Paul Park	Photoreceptor cells in the retina house the machinery for the first steps in vision.
	Rhodopsin is the light receptor that initiates a set of biochemical reactions called
	phototransduction upon photon capture. Dysfunction in rhodopsin and signaling
	proteins in phototransduction can cause a variety of retinal diseases including those
	that cause refinal degeneration. Mutations in modopsin are a leading cause of autosomal dominant refinitis nomentosa, a progressive refinal degenerative disease
	currently without a cure or effective treatment. Ouestions related to the dynamics
	and structural properties of rhodopsin and other signaling proteins in photoreceptor
	cells need to be answered to better understand the mechanisms underlying retinal
	degeneration arising from photoreceptor cell dysfunction. Tagging endogenous
	proteins with fluorescent proteins is a powerful method in cell biology and will
	help advance studies to unravel the mechanisms underlying retinal degenerations.
	While this has been accomplished and used widely in cell culture systems, more
	rbodopsin tagged with a fluorescent protein has been achieved in animals such as
	transgenic X. laevis and knockin mice. While these animal models have been
	useful in some regards, further improvements are necessary to advance studies
	related to photoreceptor cell biology and retinal disease. We introduce several

improvements over previous attempts that will achieve proper expression of
rhodopsin, avoid retinal degeneration, make use of an improved fluorescent
protein, and generate a mouse model on a C57Bl/6J background. A knockin mouse
expressing endogenously expressed rhodopsin tagged with a fluorescent protein
will provide a valuable tool for a variety of applications ranging from basic
biophysical and biochemical studies to the testing of therapeutics and retinal
disease mechanisms. Studies utilizing this mouse model will advance our
understanding of photoreceptor cell biology and retinal diseases such as retinitis
pigmentosa.

Bryan grants (1)

Institution	
OSU Ophthalmology	Corneal Biomechanics in Diabetes with and without Diabetic Retinopathy
PI: Cynthia Roberts &	Diabetes is associated with high blood sugar and may lead to the development of
Yanhui Ma	Diabetic Retinopathy, which is associated with severe vision loss. In addition, high
	blood sugar is also associated with a stiffer cornea. Therefore, it is proposed to
	biomechanically characterize the cornea and scleral response of diabetic subjects
	with retinopathy and compare them to both those without retinopathy as well as
	normal subjects in a separate study. A clinical device which uses high-speed
	imaging during corneal deformation with an air puff will be used to generate a set
	of dynamic corneal response parameters. In addition, a device which captures the
	pattern of vessels in the retina will be used to compare the biomechanical data to
	the retinal vascular data. Once this dataset of deformation parameters and vascular
	parameters is generated, statistical analysis will be used to develop a
	biomechanical index that might be used in future studies to predict the risk of a
	diabetic patient developing diabetic retinopathy. Early detection will allow
	treatment to prevent vision loss.
CWRU None	

Fellowships (2)	
NE Ohio Medical	
College;	
OSU Ophthalmology	Automatic determination of vertical cup-to-disc ratio from fundus images
Fengze Wu	using artificial intelligence
PI: Xiaoyi Raymond Gao	Glaucoma is a chronic, degenerative optic neuropathy and the leading cause of
(year 1)	blindness worldwide. It is a term used for a group of disorders that share a characteristic progressive excavation of the optic nerve head with associated and irrecoverable loss of the visual field. If untreated, glaucoma ultimately results in blindness. Individuals with glaucoma typically do not show symptoms for years and their case may become advanced before they notice an extensive visual field loss in one or both eyes. Early detection and treatment are crucial for preventing vision loss from glaucoma. Glaucoma presents a significant disease burden. It affects 70-90 million people worldwide and is responsible for blindness in approximately 4.5 million people. Furthermore, about half of glaucoma cases are not aware that they have glaucoma even in developed countries. The US economic burden for glaucoma care is
	estimated at \$2 .86 billion annually.
	Vertical cup-to-disc ratio (VCDR), the ratio of (vertical diameter of cup)/(vertical
	diameter of disc) in the optic nerve head region, is an important structural
	parameter for glaucoma. People with glaucoma tend to have larger VCDR. As the

· · · · · · · · · · · · · · · · · · ·	
	disease progresses, the optic nerve fibers begin to die and the optic cup becomes
	larger in comparison to the disc. VCDR greater than 0. 7 is a typical criterion for
	glaucoma.
	VCDR can be estimated by eye specialists during eye exams or from fund us
	images. However, this procedure is time-consuming and is subjective to personal
	experience. Automatic approaches deriving VCDR from fundus images not only
	reduce the manual burden, but also provide an objective and quantitative
	determination of VCDR.
	This study aims to design and implement an automated system for determining
	VCDR from fundus images using a state-of-the-art artificial intelligence approach,
	addressing the critical need for an automated solution for glaucoma screening.
Univ. of Cincinnati	Corneal diseases are one of the leading causes of blindness globally. Current
Jhuwala Venkatakrishnan	treatment approaches involve surgical procedures such as full thickness corneal
(PI Winston Kao)	transplantation, partial-thickness transplantation, etc. These procedures involve the
(vear 5)	use of topical corticosteroids with or without adjuvant immunosuppressant therapy.
() •••• •)	which are often compromised by graft rejection and side-effects of
	immunosuppressants Mesenchymal stem/stromal cells (MSCs) isolated many
	connective tissues are currently being investigated as a potential treatment
	approach for corneal disorders. They are widely used in experimental medicine
	often as the last resort for devastating health problem e.g. pulmonary fibrosis
	However, therapeutic efficacy of MSCs differs across the globe due to inability to
	identify and procure high quality cells owing to the lack of standardized protocol to
	culture MSCs and specific biomarkers associated with therapeutic capability
	including umbilical mesenchymal stem/stromal cells (UMSCs) derived from
	umbilical cords UMSCs are known for its immune-modulating and
	anti-inflammatory properties LIMSCs proliferate at a logarithmic rate. In the initial
	early log phase, these cells have lower cell density with high proliferation rate. As
	the cells enter the mid-log and late-log phase, the proliferation rate decreases. Cells
	in each growth phase have different cell densities and distinct secretory profiles of
	cytokines and chemokines. Determining the appropriate cell growth phase would
	improve the chances of selecting cells with higher therapeutic efficacy. In addition
	to the cell culture conditions, conditioning of these cells by pre-treating with
	certain cytokines may also enhance cells ability to produce anti-inflammatory and
	immune modulating factors. Studies suggests that MSC pre-treated with
	Transformation Growth Easter, Reta1 (TGE 81) can better promote wound healing
	ransformation Growth Factor-Detail (TGF-p1) can better promote would heating
	capacity in experimental mouse models. Thus, it is plausible to hypothesize that
	with TCE 81 will provide highly office giowal LIMSCs for treating couler surface
	discosso
	Deleting Light Driver Devil Demonstrate Meletenia and Characteria
Elizabeth Day Od MS	These who report clean machines, but do not most the ariteria for diagnosis of a
(DL Andrew Hertwick)	Those who report sleep problems, but do not meet the criteria for diagnosis of a
(PI: Andrew Hartwick)	Clinical sleep disorder, still experience functional impairment in their daily lives.
	Poor sleep, even at a subclinical level, increases the risk of diabetes,
	cardiovascular disease, obesity, and death. The current public health strategy to
	compat poor sleep is a collection of one-size-fits-all sleep hygiene
	recommendations, which produce inconclusive outcomes in controlled studies.
	Two major factors in sleep onset and quality are light exposure and melatonin.
	Light reduces melatonin release by the pineal gland. Melatonin is a molecule that
	slowly builds up in the bloodstream throughout the day. Once the concentration
	reaches a certain threshold, we feel tired enough to go to sleep. Light also worsens

sleep quality by causing shallow sleep, more sleep interruptions, and increased
brain activity.
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are the signalers of
light to the brain, and their activity has been linked to lower melatonin levels.
ipRGC activity is measured through light-induced pupil constriction, and ipRGC
input creates a strong, sustained pupil constriction that lasts for multiple seconds
after the light turns off (called the post-illumination pupil response, or PIPR). This
phenomenon is the marker for ipRGC activity in humans.
We expect that the alternating red-blue light above melanopsin threshold, the 6 Hz
flickering red and blue lights, and the 6 Hz flickering checkerboard will evoke
greater pupil constriction, indicative of ipRGC activity, compared to the other
stimuli. These results will support our hypothesis that ipRGCs are not simple
photon counters that are completely controlled by melanopsin.
We also expect that those with a stronger light-induced pupil constriction, and
therefore a stronger light-driven ipRGC response, will also present as later
chronotypes and have a lower level of melatonin concentration at the test time
compared to those with weaker light-induced pupil constriction. We can then use
light-induced pupil constriction, an objective test, to complement chronotype
questionnaires and gain a better understanding of each person's sleep needs and
behavior. This will lead to an individualized approach to sleep intervention,
"personalized sleep hygiene," adapting the current models of sleep hygiene and
emphasizing some components over others to promote the best possible outcomes.
For example, to those with a stronger light-induced ipRGC response, it is even
more important to recommend avoiding all forms of light exposure in the hour or
two before sleep.
These results will also promote more research into sleep behavior and other
aspects of sleep hygiene, such as cortisol levels and caffeine intake.

Grunto related to r	
Institution	
Wright State University	Dr. Organesiak has retired.
OSU Optometry None	
OSU Ophthalmology	AMD: Unraveling Inflammatory Mechanisms in Aging Eye
PI: Nagarai Kerur, PhD	Geographic atrophy (GA) is an advanced form of age-related macular degeneration (AMO} characterized by central vision loss due to retinal-pigmented epithelium (RPE) cell death. Aging is the most important risk factor for AMO. Emerging data suggests that pathogenesis of GA is linked to over-activation of a tissue-damaging immune pathway. However, the connection between aging and the mechanism by which aging influences over-activation of tissue-damaging immune responses in AMO is currently not known. Here, we hypothesize that, aging-associated DNA damage in eyes with AMO is responsible for the over-activation of the tissue-damaging immune pathway.
CWRU None	

Grants related to AMD (1)

Lois Hagelberger-Huebner Young Investigator Applications (2)

Applicant	

Maryo C. Kohen MD., FICO, FEBO, FEBOS, mRCSE Physician/Research Faculty Rainbow Babies & Children's Hospital and Case Western Reserve University	NOVEL DRUG DELIVERY DEVICE FOR PIRFENODINE TO REDUCE FIBROSIS IN PEDIATRIC GLAUCOMA DRAINAGE DEVICE IMPLANTATION The proposed bioactive material platform will set the groundwork for the first therapy that will tackle foreign body reaction issues judiciously after GDD implantation for long term. The platform holds great potential in reducing re-operation rates while enhancing low IOP to maintain good visual potential in long term for kids.
	Following glaucoma drainage device (GDD) surgery it is the foreign body reaction forming a collagen-rich capsule that poses the major resistance to aqueous humor flow through GDD. This is especially important in pediatric population since they will be keeping the GDD for all their lives and need a physiological IOP not to lose vision. Our overreaching hypothesis is inhibition of foreign body reaction by pirfenidone and having a sustained anti-fibrosis effect by a slow release system via biodegradable sheath. We are proposing a biodegradable drug delivery system to address the foreign body reaction following GDD implantation by inhibiting fibrosis by a novel drug called pirfenidone. There is extensive in vivo and clinical literature demonstrating efficacy of pirfenidone for various fibrogenic conditions. Also, our preliminary data indicate that pirfenidone reduces macrophage polarization to pro-fibrogenic form, and suppress proliferation and collagen production by fibroblasts in vitro. In animal models pirfenidone has been shown to reduce the foreign body reaction after GDD implantation. However its effect has been limited by short term use. Long term effect is paramount in children as they are more prone for foreign body reaction and they need GDD to work properly for very long time not to lose vision further. For the first time in the literature we are proposing a slow release mechanism by a biodegradable sheath for the aforementioned drug to minimize the foreign body reaction thus saving the patient from another surgery to maintain the vision. Our drug delivery mechanism will be made out of biodegradable poly (lactic-co-glycolic acid) (PLGA) sheath that is loaded with pirfenidone by our patent pending computerized rotational jet spraying (CORJET) method for drug delivery.
	 Aim 1: Identify effective dose and material formulations for the drug delivery system. <i>Refinement of biomaterial formulations:</i> PFD starter dose determined in in vitro studies in macrophage cell studies in 2020. We will be further testing PLGA formulation that will degrade in vivo during the first three weeks in vitro determination of a starter dose of PFD from PLGA that in different cell cultures such as fibroblasts. Aim 2: Decrease foreign body reaction to GDD in vivo The delivery platform formulations developed in Aim 1 will be applied in tandem in a rabbit model to determine if the foreign body reaction will be assessed at early and later time-points by quantitative immunohistochemical analysis of inflammatory response and de-novo collagen deposition.